Artificial neural network inference on FPGAs in PUNCH4NFDI 6th FAIRmat Users Meeting

Johann C. Voigt on behalf of PUNCH4NFDI TA5

3 July 2025

PUNCH4NFDI

https://www.punch4nfdi.de/about/task_areas/ [1]

- NFDI consortium for particle physics and astrophysics
- Main goal: Development of a FAIR science data platform to manage full lifecycle of research data
- TA5: Data irreversibility: Unavoidable loss of data if volume is too large
 - Intelligent filtering in real-time

Where our data comes from

High energy particle physics: ATLAS experiment

Radioastronomy: (Future) Square Kilometre Array

Left: https://cds.cern.ch/images/CERN-GE-0803012-01 [2] Right: https://skao.canto.global/v/SK&OMediaKit/album/OMQJL?viewIndex=2&column=image&id=1chq7ohjc10ah3&4e0dm15mj7k [3]

Johann C. Voigt

ML on FPGA (PUNCH4NFDI)

Why do we use FPGAs?

What is an FPGA?

- Chip that is reconfigurable after manufacturing (in the field)
- Functional blocks: Logic cells, registers, RAM blocks, multipliers (digital signal processors/DSPs)
- Periphery: network transceivers, ...
- Flexible interconnect: Arbitrarily connect functional blocks
- High data throughput using pipelining, fixed-latency possible
- Good connectivity with high number of optical links
- Reconfigurability decreases project risk compared to ASICs
- Lower price compared to ASICs in low quantities
- Firmware can be simulated, but debugging more complex than for software

What do FPGAs look like in practice?

Johann C. Voigt

- FPGAs increasingly used in fast/low latency readout systems
- ML algorithms promise performance increase
 - Better selection of interesting physics events decreases required storage or increases data that can be recorded
- Modern FPGAs offer enough resources for ML applications
 - DSP blocks ideal for multiply-accumulate operations
 - Specialized models with AI accelerators

Analysis of pulsar data from radio telescope

Data formats

Example data set (21 min):

- Goal: Only store baseband data when signal is detected
- Use minimal pre-processing
 - Train ANN to classify spectrograms

https://indico.desv.de/event/45348/contributions/173482/ [5]

hls4ml

10.1088/1748-0221/13/07/p07027 [6]

- Supports growing number of ANN architectures, ML frameworks in frontend and HLS languages in backend
- Other tools exist, but hls4ml offers broadest compatibility and feature set

ML on FPGA (PUNCH4NFDI)

- Automatic conversion from trained models to HLS code
- Final translation into firmware depends on vendor tools
- Support for typical optimization techniques like pruning and quantization

3 July 2025

Workflow

- Using FPGA as accelerator:
 - Host CPU manages the process
 - Shared High Bandwidth Memory (HBM) to transfer data to FPGA
 - AI kernel on FPGA (and data stream management)
 - Transfer results back via HBM
- AI kernel generated using hls4ml
- Tested with simplified example network: 2D CNN with 4572 parameters, results match expectation (can be tested out at https://github.com/ypmen/punch_workshop [7])
- $\bullet\,$ Latency estimate $\approx 1\,\text{ms}$ with 72 MHz maximum clock frequency
- Resource utilization estimates:

loh

Resource utilization	BRAM 18k	DSPs	Registers	Logic (LUT)
Pre-synthesis	4 %	7 %	2 %	16 %
Post-synthesis	11%	7 %	9 %	16%
ann C. Voigt	ML on FPGA (F	UNCH4NEDI)	3 July 2025

ATLAS LAr calorimeter

- Upgraded Large Hadron Collider will provide \approx 140 proton-proton collisions per bunch crossing (BC) $\hat{=}$ every 25 ns $\hat{=}$ 40 MHz
- ATLAS experiment detects collision products using layered sub-detectors
- Higher pileup and higher trigger rate require replacement of LAr calorimeter electronics
- $235 \,\mathrm{Tbit}\,\mathrm{s}^{-1}$ data stream from LAr calorimeters alone

Left: https://cds.cern.ch/record/1095928 [8], Middle: https://www.particles.uni-freiburg.de/dateien/vorlesungsdateien/particledetectors/kap8 [9], Right: https://cds.cern.ch/record/331061 [10]

Convolutional neural network architecture (CNN)

Example sequence

https://twiki.cern.ch/twiki/bin/view/AtlasPublic/LArCaloPublicResultsUpgrade [11]

CNNs show improved performance for overlapping pulses

- Input: Signal enriched simulated detector sequences
- True energy available as training target
- CNNs trained in Python using Tensorflow/Keras framework
- Optimal Filter/CNN output compared to true energy

Requirements for the CNN architecture and firmware

Constraint	Architecture/Training	Firmware	
Low latency ($pprox$ 150 ns)	Limited number of layers	Latency optimized pipeline	
384 cells per FPGA @ 40 MHz	Only 400 parameters quantization aware training	Resource optimization, quantization	
Single compiled firmware for all FPGAs	Fixed architecture, no pruning	Weights configurable via net- work interface	
Intel FPGA	Quantization to 18 bit	Limited choice of avail- able ML firmware frame- works	

CNN firmware implementation

- CNN inference implemented in VHDL
- Model architecture configurable and automatically extracted from Keras output files
- Support multiplexing
 - \blacktriangleright Design runs at 12× ADC frequency
 - Cyclically processes 12 detector cells
- Development for Intel Agilex-7 FPGA
 - Calculation in 18 bit fixed point numbers
 - DSP can be chained for multiply-accumulate operations
 - Structure of FPGA directly considered in firmware design

Testing firmware on development kit

- Wrap firmware containing CNNs with input and output memory
- Configure input data, CNN weights, general configuration and load back results to PC using IPbus

- $\bullet\,$ Latency requirement by ATLAS trigger of $\approx 150\,\text{ns}$ met
- Can process required number of 384 detector cells
 - 12-fold multiplexing with 33 parallel instances
- Resource estimates based on Intel Quartus reports

Network	Multiplex.	Detector cells	$f_{ m max}$	Logic (ALMs)	DSPs
CNN (100 param.)	12	396	539 MHz	4 %	13 %
CNN (400 param.)	12	396	510 MHz	19 %	50 %

https://cds.cern.ch/record/2285584 [12]

- First trigger level implemented in hardware (e.g. FPGAs)
- Strict latency budget due to limited buffering capabilities of readout
- Specialized trigger modules for different subdetectors
- ML algorithms improve trigger efficiency

Evaluation of AMD/Xilinx AI engines for the ATLAS trigger

- New AMD/Xilinx Versal family offers devices combining regular FPGA fabric with specialized AI engines
 - Processing units with instruction set, not just multipliers
 - Each engine can do e.g. 32 16 bit multiplications in one clock cycle

Objective

• Evaluate suitability of AI engines for low latency applications

https://www.amd.com/en/products/adaptive-socs-and-fpgas/technologies/ai-engine.html [13]

Program and connect the AI engines

https://www.amd.com/en/products/adaptive-socs-and-fpgas/technologies/ai-engine.html [13]

- AMD recommends usage of Vitis AI tools
 - Implements DPU IP-core
 - Seems to cause latency of > 30 µs even for simple networks
- Alternative manual approach
 - Develop firmware for programmable logic with AXI interface to AI engines
 - Export project to Vitis
 - Write kernels for AI engines (C++) and connect to AXI interfaces
 - Build full project in Vitis and Vivado

- Interface can run at up to half of AI engine frequency
- First tests suggest round-trip latency between programmable logic (FPGA) and Al engines 51.2 ns (40 clock cycles at 625 MHz)
- Constant writing on interface leads to backpressure due to FIFO filling up

https://indico.desy.de/event/45348/contributions/173483/ [14]

Summary and recommendations

- Finishing summary document with recommendations about ML on FPGA
- FPGAs are essential component in particle physics and astrophysics experiment readouts due to low latency and high data throughput
 - ► ANNs on FPGA improve physics performance, especially for trigger systems
 - ► Hybrid architectures with AI accelerators promising for future applications
- hls4ml offers good solution for most situations and is good starting point
 - Other options: Vitis AI, FINN, Conifer, …
- Constraints from project may require more custom solutions
 - ▶ High level synthesis solutions for easier implementation and better maintainability
 - VHDL/Verilog for direct control over resource allocation
- Implementation needs to be embedded into firmware project
 - Software for simulation and synthesis (and potentially build system like hdlmake)
 - Core library, e.g. Colibri
 - Verification, e.g. UVM, UVVM, OSVVM, Cocotb

Sources I

PUNCH4NFDI. Task areas. URL: https://www.punch4nfdi.de/about/task_areas/ (visited on 06/30/2025).

- [2] Joao Pequenao. Computer generated image of the whole ATLAS detector. CERN, ATLAS. Feb. 27, 2015. URL: https://cds.cern.ch/images/CERN-GE-0803012-01 (visited on 08/06/2020).
- [3] SKAO. SKA-Mid close up artist impression. June 24, 2021. URL: https://skao.canto.global/v/SKAOMediaKit/album/OMQJL?viewIndex=2& column=image&id=1chq7ohjc10ah3k4e0dm15mj7k (visited on 06/26/2025).
- [4] AMD. AMD Alveo U55C High Performance Compute Card. 2025. URL: https://www.amd.com/en/products/accelerators/alveo/u55c/a-u55c-p00gpq-g.html (visited on 06/27/2025).

Sources II

- [5] Andrei Kazantsev. Deep Learning for Real-time Classification of Astronomical Radio Signals: Current Status. Sept. 18, 2024. URL: https://indico.desy.de/event/45348/contributions/173482/ (visited on 07/01/2025).
- J. Duarte et al. "Fast inference of deep neural networks in FPGAs for particle physics". In: Journal of Instrumentation 13.07 (July 2018), P07027–P07027. DOI: 10.1088/1748-0221/13/07/p07027. (Visited on 03/29/2021).
- [7] Yunpeng Men. PUNCH4NFDI TA5 Workshop (Dresden, 2024)hls4ml. 2024. URL: https://github.com/ypmen/punch_workshop (visited on 07/02/2025).
- [8] Joao Pequenao. Computer generated image of the ATLAS Liquid Argon. CERN. Mar. 27, 2008. URL: https://cds.cern.ch/record/1095928 (visited on 03/29/2021).

Sources III

- [9] Karl Jakobs. Particle Detectors 2015. Chapter 8. 2015. URL: https://www.particles.unifreiburg.de/dateien/vorlesungsdateien/particledetectors/kap8 (visited on 03/21/2024).
- [10] LHC Experiments Committee, LHCC. ATLAS liquid-argon calorimeter: Technical Design Report. Technical design report. ATLAS. Geneva: CERN, 1996. URL: https://cds.cern.ch/record/331061 (visited on 04/06/2021).
- [11] ATLAS LAr Calorimeter Group. Public Liquid Argon Calorimeter Plots on Upgrade. URL: https://twiki.cern.ch/twiki/bin/view/AtlasPublic/ LArCaloPublicResultsUpgrade.
- [12] ATLAS Collaboration. Technical Design Report for the Phase-II Upgrade of the ATLAS TDAQ System. Tech. rep. Geneva: CERN, 2017. DOI: 10.17181/CERN.2LBB.4IAL. URL: https://cds.cern.ch/record/2285584 (visited on 06/30/2025).

- [13] AMD. AMD AI Engine Technology. 2025. URL: https://www.amd.com/en/products/adaptive-socs-andfpgas/technologies/ai-engine.html (visited on 06/27/2025).
- [14] Christian Kahra. Experience with Xilinx Versal Al. Sept. 18, 2024. URL: https://indico.desy.de/event/45348/contributions/173483/ (visited on 07/01/2025).